HB 2017 Transit Advisory Committee

January 21, 2022

Chat Webex Tutorial Right side window Chats are recorded **Participants Right side window** Video On/Off Reactions Raise your hand **Leave Meeting** Mute/Unmute ☐ Stop video ∨ **◆** Share (it)

Unmute ~

8 Apps

Meeting Agenda

Public Comment 8:30 a.m.

Introduce New Committee Members 8:35 a.m.

Committee Chair Position 8:40 a.m.

Review Equity Map 8:45 a.m.

Zero Emission Bus Update 9:15 a.m.

Public Comment

New Committee Members/ Vacant Positions

Member	Organization	Representing
Cameron Bennet	PSU	Students
Sarah lannarone	The Street Trust	Active Transportation
Vacant	Metro	Metro
Vacant	TBD	Environmental
Vacant	TBD	Multnomah County Riders

Committee Chair

2020-21 Committee Chairs

- Jarvez Hall
- Deanna Palm

Committee bylaws require a committee vote for cochairs:

Section V.a.: Committee and subcommittee officers will be elected by a simple majority.

Vote for Committee Co-Chairs at Feb. meeting

Equity Maps

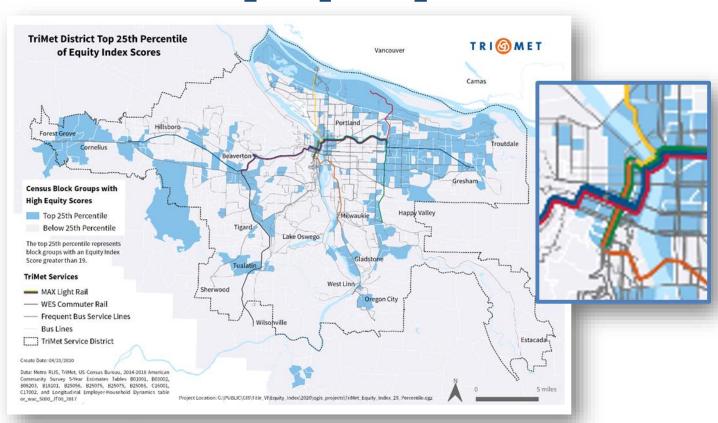
Equity Map Process

- HB 2017 legislation calls for investments to occur in "low income" communities
 - Advisory committees must define "low income".
- HB 2017 Transit Advisory Committee has used TriMet's Equity Index

TriMet Equity Index

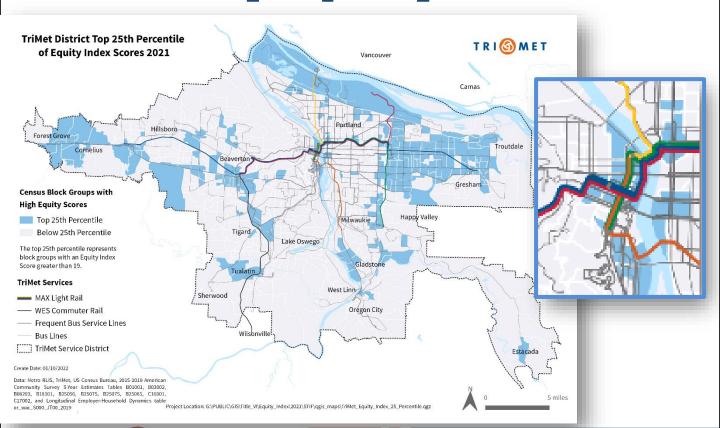
Equity Index 10 Factor Analysis:

- Low income population (200% of poverty)
- People of color
- Limited English proficiency
- People with disabilities
- Senior population

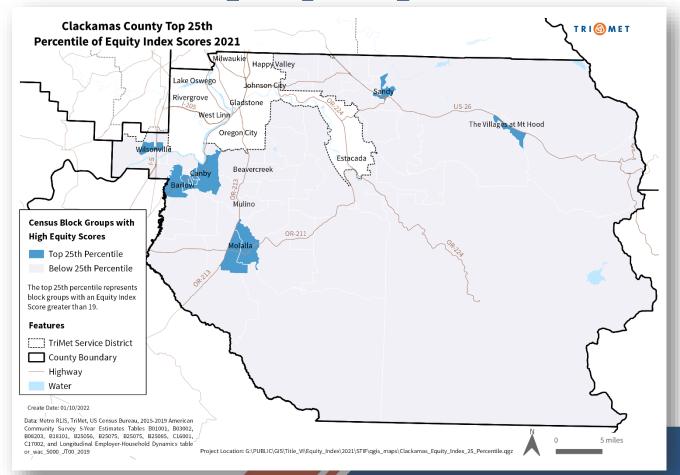

- Youth population
- Low & medium wage jobs
- Limited vehicle access
- Affordable housing units
- Key retail/human/social services

FY22-23 Map: Top scoring quartile composed the equity areas

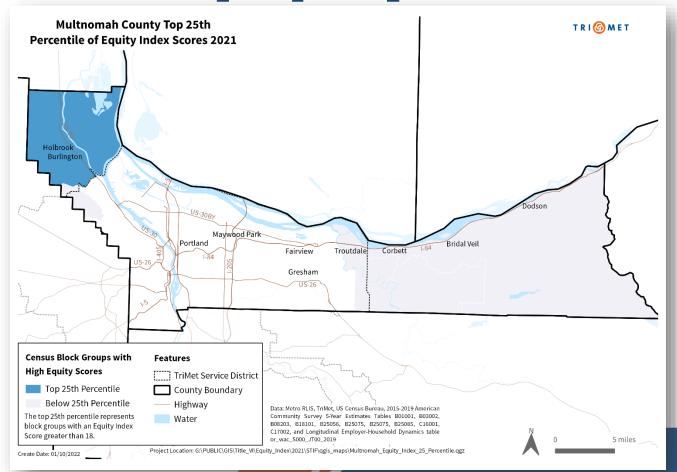
Change from FY22-23: Separate maps for county areas outside of TriMet

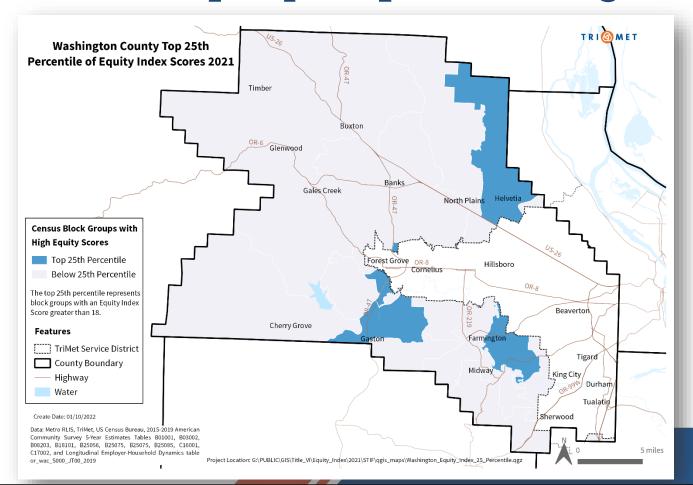


FY22-23 Equity Map



FY24-25 Equity Map - TriMet



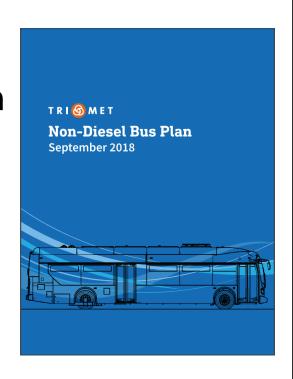

FY24-25 Equity Map - Clackamas

FY24-25 Equity Map - Multnomah



FY24-25 Equity Map - Washington

TriMet's Zero Emissions Bus Fleet:


Progress to Date and Future Plans

Background

- TriMet committed to a full fleet transition by 2040
- Since 2018, we have been testing several types of buses

New Flyer

(Short-Range Battery Electric)

- 5 buses total operating on Line 62
- Charge at Merlo
 Garage and Sunset
 Transit Center
- Early challenges with reliability

Gillig

(Long-Range Battery Electric)

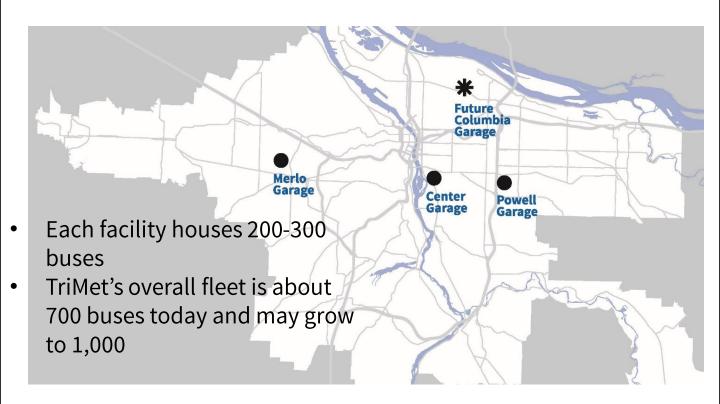
- 5 buses total
- Charge at Merlo Garage
- Operating on Lines 6, 20

Diesel-to-Electric Conversions

40' Gillig Bus, converted by Complete Coach Works

60' New Flyer Bus, converted by Complete Coach Works

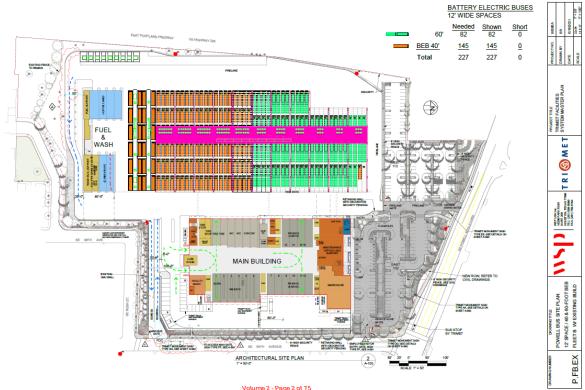
New Flyer Long-Range Buses on Loan

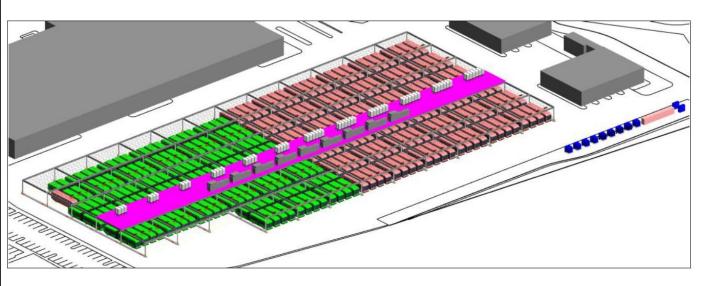

Buses from King County Metro that have been loaned to us for 1 year

Future Planning: Bus Facilities

Bus Facilities

Ground-Mounted to Overhead Charging


Existing ground-mounted plug in charger at Merlo Garage

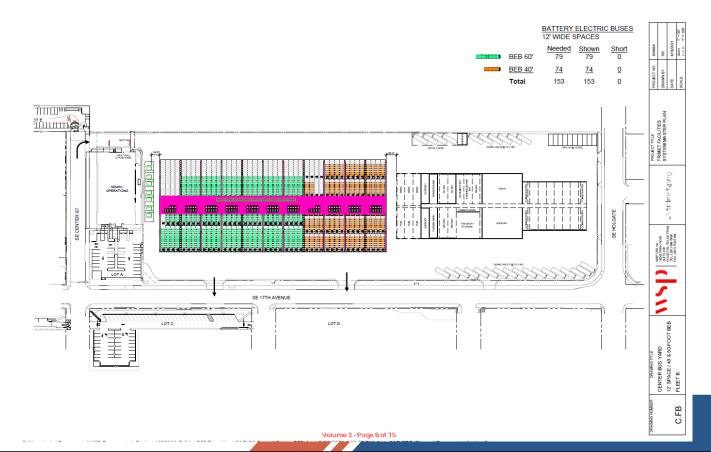

Example Overhead Charging System

Powell Garage Site Plan

Powell - Rendering

View from Northwest

Merlo Garage Site Plan



Merlo - Rendering

Center Garage Site Plan

Columbia Garage Site Plan

Upgrading Power

	Estimated Future Maximum Power Consumption with a Fully Battery-Electric Fleet
Powell	13.62 mW
Merlo	11.04 mW
Center	9.18 mW
Columbia	15.72 mW

Maintenance Facility Upgrades

- 1. Fall protection
- 2. Overhead lifting capability
- 3. Charging units in garage

Cost Estimates

(in \$2021, with contingency)

Garage	Charging Infrastructure	Maintenance Facility Upgrades	Total (\$2021)
Powell	\$166M	\$15M	\$181M
Merlo	\$128M	\$2M	\$130M
Center	\$112M	\$14M	\$126M
Columbia	\$195M		\$195M
Total for Garage Upgrades (base year)			\$632M
Total for Garage Upgrades (year of expenditure)			\$826M

Zero Emissions Technology Options and Range Considerations

Three Types of Zero Emissions Buses

1. Long Range Battery Electric Bus

- Typical range of up to 150 miles per charge
- Charge overnight at garage
- Example: TriMet's Gillig buses

2. Short Range Battery Electric Bus

- Typical range of ~50 miles per charge, unlimited daily range
- Charge overnight at garage AND during layovers
- Example: TriMet's New Flyer buses

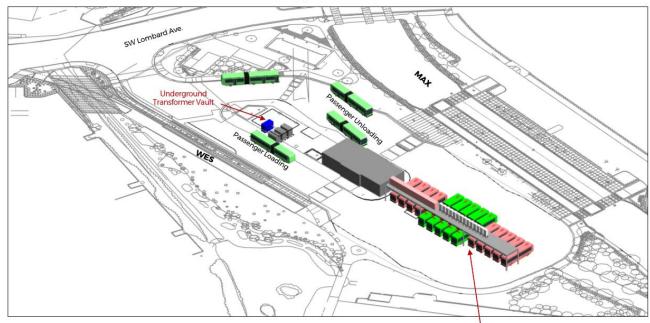
3. Fuel Cell Electric Buses

- Operate similarly to diesel buses with hydrogen in place of diesel
- Range of up to 300 miles
- Require a source of hydrogen

ZEB Types Comparison

Long-Range BEB	Short-Range BEB	FCEB
+ lowest infrastructure cost	+ unlimited range	+ higher range+ operations similarto diesel
- Limited range (nearly 50% of TriMet buses operate more than 150 miles/day), would require more buses, larger facilities, and more drivers to operate same service	 High infrastructure cost High operating cost (purchasing electricity at peak times) 	 High infrastructure cost High operating cost (cost of hydrogen)

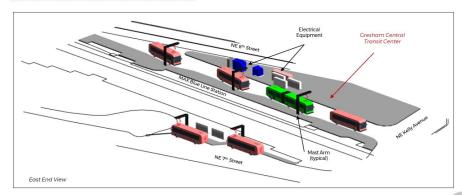
Short-Range BEBs and Opportunity Charging


- Initial modeling indicated need for fast chargers at 7 locations
 - Beaverton Transit
 Center
 - Gresham Transit
 Center
 - Clackamas
 Transit Center

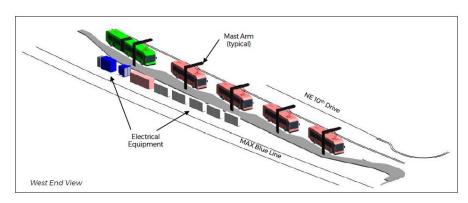
- Parkrose Transit
 Center
- Gateway Transit
 Center
- Tigard Transit
 Center
- Pier Park

Beaverton Transit Center

Beaverton TC (Recommended Option)



Bird's Eye View of Beaverton Transit Center


Bus Layover with Opportunity Charging

Gresham Transit Center

Gresham Central TC (East End)


<u>Gresham Central TC - NE 10th Drive Layover (West End)</u>

Clackamas Town Center TC

Clackamas TC

Cost Estimates

(in \$2021, with contingency)

Site	Estimated Cost for Opportunity Charging
Beaverton	\$19M
Gresham	\$19M
Clackamas	\$16M
Parkrose	\$11M
Gateway	\$14M
Tigard	\$4M
Pier Park	\$8M
Total in Base Year \$2021	\$92M
Total in Year of Expenditure	\$119M 40

Hydrogen Fueling

Example hydrogen bus fueling station in California

Photo credit: WSP

Hydrogen Storage

Liquid Storage

Photo credit: h2stationmaps.com

Gaseous Storage

Photo credit: Eason Industrial Engineering, https://www.easonindustrial.com/

Hydrogen Generation

Electrolyzer (water)

Source: Nel

Nearest Options for Sourcing Hydrogen

- Sacramento, CAAir Products
- Las Vegas, NV –
 Air Liquide
- Douglas
 County, WA (in construction)

TriMet would need 4-5 truck deliveries per day

Hydrogen Alternatives Analyzed

	Description	Conclusions
1	Produce hydrogen at Columbia Bus Base and distribute to other facilities	 Not feasible; requires a specialized fleet and workforce for delivery trucks
2	Produce gaseous hydrogen at each facility	 Very high capital cost and real estate requirements
3	Purchase liquid hydrogen from offsite	- Likely the best choice if a local source becomes available

Estimated Capital Costs

Alternative	Capital cost (\$2021) of infrastructure to support 2040 bus volumes
2: Produce hydrogen	\$440M
3: Purchase hydrogen	\$53M

Summary of Capital Costs

- Garage upgrades = \$632M
- Opportunity charging = \$92M OR
 Hydrogen fueling = \$53M

<u>Total Infrastructure Need = \$685-724M</u> (in \$2021)

Next Steps

- Initiating next procurement of BEBs
- Air quality modeling and clean corridors plan
- Continued long term planning and design for bus garages

Meeting Adjourned

